Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309258

RESUMEN

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Asunto(s)
Encéfalo , Microglía , Axones , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Macrófagos/fisiología , Microglía/patología , Morfogénesis
2.
Nucleic Acids Res ; 52(D1): D222-D228, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37850642

RESUMEN

MethMotif (https://methmotif.org) is a publicly available database that provides a comprehensive repository of transcription factor (TF)-binding profiles, enriched with DNA methylation patterns. In this release, we have enhanced the platform, expanding our initial collection to over 700 position weight matrices (PWM), all of which include DNA methylation profiles. One of the key advancements in this release is the segregation of TF-binding motifs based on their cofactors and DNA methylation status. We have previously demonstrated that gene ontology (GO) enriched terms associated with TF target genes may differ based on their association with alternative cofactors and DNA methylation status. MethMotif provides precomputed GO annotations for each human TF of interest, as well as for TF-co-TF complexes, enabling a comprehensive analysis of TF functions in the context of their co-factors. Additionally, MethMotif has been updated to encompass data for two new species, Mus musculus and Arabidopsis thaliana, widening its applicability to a broader community. MethMotif stands out as the first and only TF-binding motifs database to incorporate context-specific PWM coupled with epigenetic information, thereby enlightening context-specific TF functions. This enhancement allows the community to explore and gain deeper insights into the regulatory mechanisms governing transcriptional processes.


Asunto(s)
Metilación de ADN , Bases de Datos Genéticas , Factores de Transcripción , Animales , Humanos , Ratones , Sitios de Unión , Anotación de Secuencia Molecular , Motivos de Nucleótidos , Unión Proteica , Factores de Transcripción/metabolismo
3.
J Leukoc Biol ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146769

RESUMEN

The adaptive immune response is coordinated by CD4+ T cells, which determine the type and strength of the immune response and the effector cells involved. It has been reported that CD4+ T cells are less responsive in neonates, leading to low activation of the cellular response and poor antibody production by B cells. This low response is essential for the tolerant window that favors birth transition from the sterile environment in the womb to the outside world, but leaves neonates vulnerable to infection, which is still an important health issue. Neonates have a high morbidity and mortality rate due to infections, and the molecular reasons are still understudied. We asked whether the neonatal naïve CD4+ T cells have a genomic program that predisposes them to a low response. Therefore, we evaluated the transcriptome and epigenome of human neonatal and adult naive CD4+ T cells. Our results point to a gene expression profile forming a distinct regulatory network in neonatal cells, which favors proliferation and a low T cell response. Such expression profile is supported by a characteristic epigenetic landscape of neonatal CD4+ T cells, which correlates with the characteristic transcriptome of the neonatal cells. These results were confirmed by experiments showing a low response to activation signals, higher proliferation and lower expression of cytokines of neonatal CD4+ T cells as compared to adult cells. Understanding this network could lead to novel vaccine formulations and better deal with life-threatening diseases during this highly vulnerable period of our lives.

4.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496603

RESUMEN

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER+) breast cancer, constituting around 75% of all cases. However, emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance via blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of cAMP/PKA/CREB axis and increased expression of TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels. These ultimately induce lipid peroxidation and ferroptotic cell death in combination with tamoxifen. Overexpressing PDE4D rescues LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of ferroptosis induction and tamoxifen sensitization, thereby revealing LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.

5.
Nucleic Acids Res ; 50(W1): W670-W676, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35544234

RESUMEN

RSAT (Regulatory Sequence Analysis Tools) enables the detection and the analysis of cis-regulatory elements in genomic sequences. This software suite performs (i) de novo motif discovery (including from genome-wide datasets like ChIP-seq/ATAC-seq) (ii) genomic sequences scanning with known motifs, (iii) motif analysis (quality assessment, comparisons and clustering), (iv) analysis of regulatory variations and (v) comparative genomics. RSAT comprises 50 tools. Six public Web servers (including a teaching server) are offered to meet the needs of different biological communities. RSAT philosophy and originality are: (i) a multi-modal access depending on the user needs, through web forms, command-line for local installation and programmatic web services, (ii) a support for virtually any genome (animals, bacteria, plants, totalizing over 10 000 genomes directly accessible). Since the 2018 NAR Web Software Issue, we have developed a large REST API, extended the support for additional genomes and external motif collections, enhanced some tools and Web forms, and developed a novel tool that builds or refine gene regulatory networks using motif scanning (network-interactions). The RSAT website provides extensive documentation, tutorials and published protocols. RSAT code is under open-source license and now hosted in GitHub. RSAT is available at http://www.rsat.eu/.


Asunto(s)
Genómica , Factores de Transcripción , Animales , Factores de Transcripción/genética , Genómica/métodos , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Redes Reguladoras de Genes
6.
Front Mol Biosci ; 9: 800152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309516

RESUMEN

Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility. All of these aspects cannot be easily resolved in a unique mathematical model or with a unique formalism. To cope with some of these issues, we introduce here a novel framework, UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic populations of interacting cells. We rely on the preexisting tool MaBoSS, which enables probabilistic simulations of cellular networks. A novel software layer is added to account for cell interactions and population dynamics, but without considering the spatial dimension. This modeling approach can be seen as an intermediate step towards more complex spatial descriptions. We illustrate our methodology by means of a case study dealing with TNF-induced cell death. Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment. Relatively easy to encode, UPMaBoSS simulations require only moderate computational power and execution time. To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which contains all software and models used for this study.

7.
Interface Focus ; 11(4): 20200061, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34123352

RESUMEN

Dendritic cells (DCs) are the major specialized antigen-presenting cells, thereby connecting innate and adaptive immunity. Because of their role in establishing adaptive immunity, they constitute promising targets for immunotherapy. Monocytes can differentiate into DCs in vitro in the presence of colony-stimulating factor 2 (CSF2) and interleukin 4 (IL4), activating four signalling pathways (MAPK, JAK/STAT, NFKB and PI3K). However, the downstream transcriptional programme responsible for DC differentiation from monocytes (moDCs) remains unknown. By analysing the scientific literature on moDC differentiation, we established a preliminary logical model that helped us identify missing information regarding the activation of genes responsible for this differentiation, including missing targets for key transcription factors (TFs). Using ChIP-seq and RNA-seq data from the Blueprint consortium, we defined active and inactive promoters, together with differentially expressed genes in monocytes, moDCs and macrophages, which correspond to an alternative cell fate. We then used this functional genomic information to predict novel targets for previously identified TFs. By integrating this information, we refined our model and recapitulated the main established facts regarding moDC differentiation. Prospectively, the resulting model should be useful to develop novel immunotherapies targeting moDCs.

8.
Front Genet ; 12: 617282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828580

RESUMEN

Networks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth. Here, we benchmark six single-cell network inference methods based on their reproducibility, i.e., their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis. Once taking into account networks with up to 100,000 links, GENIE3 results to be the most reproducible algorithm and, together with GRNBoost2, show higher intersection with ground-truth biological interactions. These results are independent from the single-cell sequencing platform, the cell type annotation system and the number of cells constituting the dataset. Finally, GRNBoost2 and CLR show more reproducible performance once a more stringent thresholding is applied to the networks (1,000-100 links). In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.

9.
Nat Commun ; 12(1): 124, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402734

RESUMEN

High-dimensional multi-omics data are now standard in biology. They can greatly enhance our understanding of biological systems when effectively integrated. To achieve proper integration, joint Dimensionality Reduction (jDR) methods are among the most efficient approaches. However, several jDR methods are available, urging the need for a comprehensive benchmark with practical guidelines. We perform a systematic evaluation of nine representative jDR methods using three complementary benchmarks. First, we evaluate their performances in retrieving ground-truth sample clustering from simulated multi-omics datasets. Second, we use TCGA cancer data to assess their strengths in predicting survival, clinical annotations and known pathways/biological processes. Finally, we assess their classification of multi-omics single-cell data. From these in-depth comparisons, we observe that intNMF performs best in clustering, while MCIA offers an effective behavior across many contexts. The code developed for this benchmark study is implemented in a Jupyter notebook-multi-omics mix (momix)-to foster reproducibility, and support users and future developers.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Neoplasias/genética , Benchmarking , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Reducción de Dimensionalidad Multifactorial , Proteínas de Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/mortalidad , Neoplasias/patología , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Análisis de Supervivencia
10.
Bioinformatics ; 36(24): 5712-5718, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-32637990

RESUMEN

MOTIVATION: A large variety of molecular interactions occurs between biomolecular components in cells. When a molecular interaction results in a regulatory effect, exerted by one component onto a downstream component, a so-called 'causal interaction' takes place. Causal interactions constitute the building blocks in our understanding of larger regulatory networks in cells. These causal interactions and the biological processes they enable (e.g. gene regulation) need to be described with a careful appreciation of the underlying molecular reactions. A proper description of this information enables archiving, sharing and reuse by humans and for automated computational processing. Various representations of causal relationships between biological components are currently used in a variety of resources. RESULTS: Here, we propose a checklist that accommodates current representations, called the Minimum Information about a Molecular Interaction CAusal STatement (MI2CAST). This checklist defines both the required core information, as well as a comprehensive set of other contextual details valuable to the end user and relevant for reusing and reproducing causal molecular interaction information. The MI2CAST checklist can be used as reporting guidelines when annotating and curating causal statements, while fostering uniformity and interoperability of the data across resources. AVAILABILITY AND IMPLEMENTATION: The checklist together with examples is accessible at https://github.com/MI2CAST/MI2CAST. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Causalidad , Humanos
11.
Mol Biomed ; 2(1): 9, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35006414

RESUMEN

Interleukins (IL)-17A and F are critical cytokines in anti-microbial immunity but also contribute to auto-immune pathologies. Recent evidence suggests that they may be differentially produced by T-helper (Th) cells, but the underlying mechanisms remain unknown. To address this question, we built a regulatory graph integrating all reported upstream regulators of IL-17A and F, completed by ChIP-seq data analyses. The resulting regulatory graph encompasses 82 components and 136 regulatory links. The graph was then supplemented by logical rules calibrated with original flow cytometry data using naive CD4+ T cells, in conditions inducing IL-17A or IL-17F. The model displays specific stable states corresponding to virtual phenotypes explaining IL-17A and IL-17F differential regulation across eight cytokine stimulatory conditions. Our model analysis points to the transcription factors NFAT2A, STAT5A and SMAD2 as key regulators of the differential expression of IL-17A and IL-17F, with STAT5A controlling IL-17F expression, and an interplay of NFAT2A, STAT5A and SMAD2 controlling IL-17A expression. We experimentally observed that the production of IL-17A was correlated with an increase of SMAD2 transcription, and the expression of IL-17F correlated with an increase of BLIMP-1 transcription, together with an increase of STAT5A expression (mRNA), as predicted by our model. Interestingly, RORγt presumably plays a more determinant role in IL-17A expression as compared to IL-17F expression. In conclusion, we propose the first mechanistic model accounting for the differential expression of IL-17A and F in Th cells, providing a basis to design novel therapeutic interventions in auto-immune and inflammatory diseases.

12.
Brief Bioinform ; 22(2): 1848-1859, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32313939

RESUMEN

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled 'Annotation and curation of computational models in biology', organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Guías de Práctica Clínica como Asunto , Reproducibilidad de los Resultados
13.
Genome Res ; 31(2): 211-224, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310749

RESUMEN

Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.

14.
Development ; 148(2)2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33298464

RESUMEN

During sea urchin development, secretion of Nodal and BMP2/4 ligands and their antagonists Lefty and Chordin from a ventral organiser region specifies the ventral and dorsal territories. This process relies on a complex interplay between the Nodal and BMP pathways through numerous regulatory circuits. To decipher the interplay between these pathways, we used a combination of treatments with recombinant Nodal and BMP2/4 proteins and a computational modelling approach. We assembled a logical model focusing on cell responses to signalling inputs along the dorsal-ventral axis, which was extended to cover ligand diffusion and enable multicellular simulations. Our model simulations accurately recapitulate gene expression in wild-type embryos, accounting for the specification of ventral ectoderm, ciliary band and dorsal ectoderm. Our model simulations further recapitulate various morphant phenotypes, reveal a dominance of the BMP pathway over the Nodal pathway and stress the crucial impact of the rate of Smad activation in dorsal-ventral patterning. These results emphasise the key role of the mutual antagonism between the Nodal and BMP2/4 pathways in driving early dorsal-ventral patterning of the sea urchin embryo.


Asunto(s)
Tipificación del Cuerpo , Embrión no Mamífero/metabolismo , Paracentrotus/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Blástula/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Simulación por Computador , Embrión no Mamífero/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Morfolinos/farmacología , Proteína Nodal/metabolismo , Paracentrotus/efectos de los fármacos , Paracentrotus/genética , Fenotipo , Probabilidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Procesos Estocásticos
15.
Front Physiol ; 11: 590479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281620

RESUMEN

As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD) constitutes a type of cellular demise that elicits an adaptive immune response. ICD has been characterized in malignant cells following cytotoxic interventions, such as chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger signals that attract and activate dendritic cells (DCs). The latter can then engulf and cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity. This series of reactions works as a positive feedback loop where the antitumor immunity further improves the therapeutic efficacy by targeting cancer cells spared by the cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer treatment are able to stimulate bona fide ICD: some commonly used agents, such as cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better characterization of the process could help identify some gene or protein candidates to target pharmacologically and suggest combinations of drugs that would favor/increase antitumor immune response. To this end, we have built a mathematical model of the major cell types that intervene in ICD, namely cancer cells, DCs, CD8+ and CD4+ T cells. Our model not only integrates intracellular mechanisms within each individual cell entity, but also incorporates intercellular communications between them. The resulting cell population model recapitulates key features of the dynamics of ICD after an initial treatment, in particular the time-dependent size of the different cell types. The model is based on a discrete Boolean formalism and is simulated by means of a software tool, UPMaBoSS, which performs stochastic simulations with continuous time, considering the dynamics of the system at the cell population level with appropriate timing of events, and accounting for death and division of each cell type. With this model, the time scales of some of the processes involved in ICD, which are challenging to measure experimentally, have been predicted. In addition, our model analysis led to the identification of actionable targets for boosting ICD-induced antitumor response. All computational analyses and results are compiled in interactive notebooks which cover the presentation of the network structure, model simulations, and parameter sensitivity analyses.

16.
Front Physiol ; 11: 558606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101049

RESUMEN

At the crossroad between biology and mathematical modeling, computational systems biology can contribute to a mechanistic understanding of high-level biological phenomenon. But as knowledge accumulates, the size and complexity of mathematical models increase, calling for the development of efficient dynamical analysis methods. Here, we propose the use of two approaches for the development and analysis of complex cellular network models. A first approach, called "model verification" and inspired by unitary testing in software development, enables the formalization and automated verification of validation criteria for whole models or selected sub-parts. When combined with efficient analysis methods, this approach is suitable for continuous testing, thereby greatly facilitating model development. A second approach, called "value propagation," enables efficient analytical computation of the impact of specific environmental or genetic conditions on the dynamical behavior of some models. We apply these two approaches to the delineation and the analysis of a comprehensive model for T cell activation, taking into account CTLA4 and PD-1 checkpoint inhibitory pathways. While model verification greatly eases the delineation of logical rules complying with a set of dynamical specifications, propagation provides interesting insights into the different potential of CTLA4 and PD-1 immunotherapies. Both methods are implemented and made available in the all-inclusive CoLoMoTo Docker image, while the different steps of the model analysis are fully reported in two companion interactive jupyter notebooks, thereby ensuring the reproduction of our results.

17.
Mol Syst Biol ; 16(8): e9110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845085

RESUMEN

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution.


Asunto(s)
Biología de Sistemas/métodos , Animales , Humanos , Modelos Logísticos , Modelos Biológicos , Programas Informáticos
18.
Nat Immunol ; 21(9): 983-997, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690951

RESUMEN

Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Infecciones por Herpesviridae/inmunología , Muromegalovirus/fisiología , Animales , Células Cultivadas , Interferón Tipo I/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Factor de Necrosis Tumoral alfa/metabolismo
19.
Front Immunol ; 11: 1089, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582178

RESUMEN

Neonates are highly susceptible to intracellular pathogens, leading to high morbidity and mortality rates. CD8+ T lymphocytes are responsible for the elimination of infected cells. Understanding the response of these cells to normal and high stimulatory conditions is important to propose better treatments and vaccine formulations for neonates. We have previously shown that human neonatal CD8+ T cells overexpress innate inflammatory genes and have a low expression of cytotoxic and cell signaling genes. To investigate the activation potential of these cells, we evaluated the transcriptome of human neonatal and adult naïve CD8+ T cells after TCR/CD28 signals ± IL-12. We found that in neonatal cells, IL-12 signals contribute to the adult-like expression of genes associated with cell-signaling, T-cell cytokines, metabolism, and cell division. Additionally, IL-12 signals contributed to the downregulation of the neutrophil signature transcription factor CEBPE and other immaturity related genes. To validate the transcriptome results, we evaluated the expression of a series of genes by RT-qPCR and the promoter methylation status on independent samples. We found that in agreement with the transcriptome, IL-12 signals contributed to the chromatin closure of neutrophil-like genes and the opening of cytotoxicity genes, suggesting that IL-12 signals contribute to the epigenetic reprogramming of neonatal lymphocytes. Furthermore, high expression of some inflammatory genes was observed in naïve and stimulated neonatal cells, in agreement with the high inflammatory profile of neonates to infections. Altogether our results point to an important contribution of IL-12 signals to the reprogramming of the neonatal CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reprogramación Celular/inmunología , Recién Nacido/inmunología , Interleucina-12/inmunología , Humanos , Transducción de Señal/inmunología
20.
Curr Top Dev Biol ; 139: 205-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32450961

RESUMEN

Boolean approaches and extensions thereof are becoming increasingly popular to model signaling and regulatory networks, including those controlling cell differentiation, pattern formation and embryonic development. Here, we describe a logical modeling framework relying on three steps: the delineation of a regulatory graph, the specification of multilevel components, and the encoding of Boolean rules specifying the behavior of model components depending on the levels or activities of their regulators. Referring to a non-deterministic, asynchronous updating scheme, we present several complementary methods and tools enabling the computation of stable activity patterns, the verification of the reachability of such patterns, as well as the generation of mean temporal evolution curves and the computation of the probabilities to reach distinct activity patterns. We apply this logical framework to the regulatory network controlling T lymphocyte specification. This process involves cross-regulations between specific T cell regulatory factors and factors driving alternative differentiation pathways, which remain accessible during the early steps of thymocyte development. Many transcription factors needed for T cell specification are required in other hematopoietic differentiation pathways and are combined in a fine-tuned, time-dependent fashion to achieve T cell commitment. Using the software GINsim, we integrated current knowledge into a dynamical model, which recapitulates the main developmental steps from early progenitors entering the thymus up to T cell commitment, as well as the impact of various documented environmental and genetic perturbations. Our model analysis further enabled the identification of several knowledge gaps. The model, software and whole analysis workflow are provided in computer-readable and executable form to ensure reproducibility and ease extensions.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Modelos Genéticos , Linfocitos T/metabolismo , Timo/metabolismo , Animales , Simulación por Computador , Linfocitos T/citología , Timocitos/citología , Timocitos/metabolismo , Timo/citología , Timo/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...